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ABSTRACT

The computationally intensive physics kernel is written so as to run without modification on single processors or any platform
that supports a message-passing style of programming. This includes workstations, traditional vector supercomputers, and
essentially all current-generation massively parallel machines. In this poster, we describe how the NIMROD kernel is
structured to enable efficient parallelization and highlight its performance on several parallel machines including the new Cray
T3E at NERSC. NIMROD represents the poloidal simulation plane as a collection of adjoining grid blocks; the toroidal
discretization is pseudo-spectral. Within a single poloidal block the grid is topologically regular to enable the usual 2-D stencil
operations to be performed efficiently. Blocks join each other in such a way that individual grid lines are continuous across
block boundaries. Within these constraints, quite general geometries can be gridded, and parallelization is achieved by
assigning one or more blocks (with their associated toroidal modes) to each processor. In parallel, the only interprocessor
communication that is then required is to exchange values for block-edge or block-corner grid points shared by other
processors. For general block connectivity, this operation requires irregular, unstructured interprocessor communication. We
describe our method of pre-computing the communication pattern and then exchanging values asynchronously, which enables
this block-connection operation to execute efficiently and scalably on any number of processors. NIMROD uses implicit
timestepping to model long-timescale events and thus requires a robust iterative solver. To date, an explicit time-stepping
routine and an iterative solver using conjugate gradient technigues have been implemented and tested in parallel for
NIMROD. The iterative method uses simple diagonal (Jacobi) scaling as a matrix preconditioner. A second method (currently
under parallel development) directly inverts the portion of the matrix residing on each block as a preconditioning step. Both
iterative solvers perform their computations on a block-wise basis and thus work in parallel using the block-connection
formalism described above. We present timings that illustrate the performance and convergence of both techniques as a
function of (1) the number of blocks used to grid the poloidal plane and (2) the number of processors used. The timings have
been run on the T3D at LLNL, T3E’s at NERSC and UT Austin, and the C90 at NERSC.



Qutline

 The NIMROD Code Development Project

— Physics Kernel
— Grid and Finite Elements
— Graphical User Interface

» Parallel Processing Considerations
e Parallel Processing--results
e Future
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Non—Ideal MHD with Rotation
Open Discussion Project
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NIMROD Physics Kernel
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Implicit Field Equation

Coldplasma [ p, =0, n=const.

Low frequency [ Ignore displacement current
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Implicit Field Equation (cont.)
p=mn, m=m,+m;lZ
Solvefor E (generalized Ohm'slaw) with E=E;, +E,,
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Can invert related symmetric system:
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Where S, Issymmetric positive definite “semi-implicit” operator

SUMMARY

Poloidal Spatial discretization by finite elements
CG matrix inversion for symmetric system
Parallel Processing focused on CG system



Spectral in Toroidal Direction

Unstructured Blocks of Structured
Quadrilaterals in Poloidal Plane

Each Unstructured Block may be a
Single Triangle (Patching of Non-
Conforming Blocks)

Outer Boundary can conform to Real
Machine Geometry

Nearly Flux Surface Conforming within
Separatrix
Singularity at magnetic axis

— Overlying Quadrilateral Grid (1st try)

— Triangle Elements (Pie-dlices) (2nd try)

Nimrod Grid
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Overlying Quadrilateral Grid led to
unphysical results at corners
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Overlying Quadrilateral Grid
near Magnetic Axis (Avoid Singularity)
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Triangle Block Patch appears to fix
problem
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Patching Triangles also
Allowsfor Variation in Grid
~ Resolution (to be implemented)
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NIMROD GUI

o Written in tcl/tk
o Controlsinteraction between user and NIMROD
— Problem setup, Dynamical integration, Runtime
dianostics
e Controlsinteraction between NIMROD and
— other user codes, pre/post processors

Mimrod Main

Preprocessar




GUI Configuration

Create the frontend for each gui.




NIMROD GUI
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nimrod: Kernel control




STEPS of PARALLEL CODE
DEVELOPMENT

Code design to avoid bottle necks

— Block domain decomposition of 2D toroidal mesh

— Blocks seam together

— Blocks or Multiple blocks assigned to processors

— FFT’sinthird dimension restricted to block

— Communication between blocks via Message Passing Interface (MPI)
Single Processor Optimization

— see“Parallelizing Code for Real Applications on the T3D,” A.E. Koniges and
K.R. Lind, Computersin Physics 9, 399 (1995)

Multiple Processor Optimization
— overlap communication and computation
Iterative Solver Design Issues



INHERENT PARALLELISM
In NIMROD

e Each processor owns 1 or more “blocks’ and thelir
assoclated “seams’.

o Computations can be done on each block
Independently.

e Only connection/communication with other
processorsisvia“seams’



m.\J NIMROD Parallel Coding Choices

* Message-passing parallelism with FOO/MP

e F90 provides dynamic memory, data structures

 MPI provides portability to any machine with a
single-processor FO0 compiler

 MPI alowsirregular, asynchronous
communication

e Same code will run on workstation, Cray C90, or
parallel platforms:
— Cray T3D/E, IBM SP2
— Workstation Clusters

o Future: benchmark vs. loop parallel (DEC cluster)




Grid Structure of NIMROD

 NIMROD gridisagenera collection of joined
sub-blocks mapped to the poloidal plane.

« Edge points of adjacent blocks join exactly.




Sub-blocking with associated seams

multi-block grid

Each edge point has
“Image” pointsin other
blocks/seams.
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FE integration stencil for block interior
and across block and/or processor
boundaries
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Across boundaries
« |If 2 adjacent blocks are on different processors, a data exchangeis

needed to complete the integration.



Parallel Design

» Assignment of blocksto processors (load-
balancing)

o Setup of data structures for parallel seaming.
« Knit seams between blocks.

— used in explicit timestepper

— used in matrix-vector multiply of CG-solver
 Dot-products for CG-solver



Serial Seam Connection

1) Copy from block-edge grid points to seams

2) Loop over images of each seam point, sum
Image values to block-edge grid points

3) Apply external boundary conditions.



Parallel Seam Connection

SERIAL VERSION: 1) Copy from block-edge grid points to seams

2) Loop over images of each seam point, sum image values to block-edge
grid points

3) Apply external boundary conditions.

PARALLEL VERSION: 1) Send my seam data to neighboring
Processors.

2) For seam points where | own both image pairs, sum image values to my
block-edge grid points.

3) Receive incoming image data from other processors sum it to my
block-edge grid points.

4) Apply external boundary conditions.

5) Copy from my block-edge grid points to my seams.



Attributes of Parallel Seam
Connection routine

« Uses asynchronous communication in irregular pattern of
connectivity between processors.

o Overlaps communication and computation (steps 2-4).

* Pre-computes data structures to optimally pack/unpack
messages being exchanged with other processors.

o Fast!
— Seam communication is only small fraction of block
computation time.



[Tming Results for Parallel Seam
Connection on T3E

e 1.02 million grid cells, 174 blocks, 51200 seam
points, 3 values/grid-cdll

e CPU secondsfor 1 seam-operation:

Procs 1 2 5 10 20 30
ime 0.64 0.25 0.12 0.081 0.033 0.024

» Scales roughly linearly with size of grid and number
of processors



Timing Results for

Explicit Nimrod T3D Calculation

* CPU seconds for 200 timesteps on the T3D shows

excellent scalability as problem size increases.

(samereal time as 50 implicit time steps)

Blocks/Cell |1 PE |2PEs [4PEs |[8PEs |16 PEs |32 PEs | 1peC90
4/400 946 | 47.3 24.2 125
16/1600 3813 | 1925 | 952 484 49.7
64/6400 14979| 759 | 3905 101.3 50.2 198.7
256/25,600 1531.8 | 7908 | 400.3 206.2
1024/102,400

Blocks are 10X 10, Cells are poloidal cells



Timing Results for

Explicit Nimrod T3E Calculation

» CPU seconds for 200 timesteps on the T3E shows

excellent scalability as problem size increases.

(same parameters as previous table for T3D)

Blocks/Cell |1 PE |2PEs [4PEs |[8PEs |16 PEs |32 PEs | 1peC90
4/400 288 | 142 758 125
16/1600 1110 | 56.8 29.2 14.8 8.1 49.7
64/6400 1121 | 583 30.8 16.0 198.7
256/25,600 117.4 62.3
1024/102,400 238.8




e CG solver with diagonal preconditioning

Timing Results for
Implicit Nimrod T3D Calculation

e 50 timesteps, roughly 30-40 CG iterations per step
— time proportional to iterations

 Preconditioning methods for CG solver require

more study
Blocks/Cell |1 PE |2PEs [4PEs |8 PEs |16 PEs |32 PEs | N-iter
4/400 216.3 | 114 574 2170
16/1600 870.1 | 4198 | 2166 | 1105 60.2 1949
64/6400 2939 | 14548| 7435 | 336.3 | 1921 104.5 1553
256/25,600 2948.2 | 1579.1| 7911 397.2 1565
1024/102,400 1378




e CG solver with diagonal preconditioning

Timing Results for
Implicit Nimrod T3E Calculation

e 50 timesteps, roughly 30-40 CG iterations per step
— time proportional to iterations

 Preconditioning methods for CG solver require

more study
Blocks/Cell [1PE |2PEs [4PEs [8PEs |16 PEs |32 PEs | 1peC90
4/400 682 | 355 19.0 55.9
16/1600 2618 | 1311 | 678 35.6 20.3 205.7
64/6400 2294 | 1204 61.6 34.8 678.1
256/25,600 242.8 125.0
1024/102,400 449.7




Performance Results Show
Nearly |deal Speed-up for Explicit Case
(even for fixed problem size)
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Scaled Speed-up
00332_8: of TSE/D
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Parallel Conclusions

» Blockwise-design of NIMROD enables rapid message-passing
parallelization.

« Explicit and diagonal-preconditioned CG solver run well in parallel
* T3E out-performs T3D, but both perform well

— (Cache, Processor speed)

— Texas Machine vs. NERSC? (problem with streams?)

F90: great language

— terrible compilers in generd

— Good on T3E, but libraries still missing

— Acceptable on T3D, but performance tools need improvement
— doesit produce fast code ?? (open question)



Future Parallel Work

e Implement 2nd NIMROD CG solver (block-invert
preconditioner) in parallel (almost complete)

» Test convergence and performance of solversas a
function of number-of-blocks, number-of-
PrOCESSors

e Try new iterative solvers
 Optimize code performance



